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Total synthesis of NADH:ubiquinone oxidoreductase (complex I)
antagonist pterulone and its analogue
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Abstract—Concise synthesis of NADH:ubiquinone oxidoreductase (complex I) antagonist pterulone (1) and its analogue (2) are
reported. Natural products 1 and 2 were prepared in four and five steps, respectively, from 5-bromosalicylaldehyde. © 2001
Elsevier Science Ltd. All rights reserved.

NADH:ubiquinone oxidoreductase comprises the first
phosphorylation site of mitochondria and is the energy-
conserving enzyme complex that is commonly known
as ‘complex I’.1 There are a wide variety of natural and
synthetic inhibitors of complex I which have found
multiple applications.2 Complex I inhibitors have been
used to elucidate the role of this enzyme in normal cell
physiology.3 Inhibitors of complex I have also been a
preferred target for the development of commercial
insecticides and acaricides for years.4 Recently, it has
been shown that inhibition of complex I causes con-
comitant reduction in the activity of orthine decarboxyl-
ase (ODC).5 ODC is responsible for the biosynthesis of
polyamine growth factors required for cellular prolifica-
tion.6 Since the overexpression of ODC activity has
been associated with tumor promotion, complex I
inhibitors capable of interfering with ODC activity and
subsequent polyamine levels makes them promising
candidates as next generation antitumor agents.7

The fungal metabolites pterulone (1) and its analogue 2
were isolated from fermentations of a Pterula sp. 82168
species, and Mycena galopus, respectively.8,9 The struc-

tures of both 1 and 2 were assigned based on their
physical and spectral characteresitcs.9,10 The architec-
tural framework that is common to 1 and 2 is a
monochlorinated 2,3-dihydro-1-benzoxepine ring skele-
ton. The differences between 1 and 2 are found in the
substitution at the 7-position and in the geometric
configuration of the vinyl chloride. Pterulone (1) bears
an acetyl group at the 7-position and its vinyl chloride
is in the E-configuration. On the other hand, com-
pound 2 bears a hydroxymethyl group at the 7-position
and its vinyl chloride is in the Z-configuration. Pteru-
lone (1) exhibited significant antifungal activity, and it
is a highly potent inhibitor of complex I with an IC50

value of 36 �M.8 The pharmacological profile of 2 has
not yet been reported. Since 2 is structurally related to
1, it is believed that 2 will exhibit similar biological
activity as pterulone (1).9

Scheme 1.
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Synthesis of pterulone (1) and 2 is compelling due to
their complex I antagonist activity, the synthetic chal-
lenges posed by their structure, and their status as
potential new leads in drug discovery efforts. An exten-
sive survey of the literature did not reveal any efficient
methods for the preparation of the 2,3-dihydro-1-benz-
oxepine ring skeleton, the architectural framework resi-
dent in 1 and 2. Disclosed herein is the first total
synthesis of 1 and 2 requiring only four and five steps,
respectively, from commercially available 5-bromosali-
cylaldehyde (3). Key to the synthesis is a tandem SN2/
Witting reaction sequence for construction of the
2,3-dihydro-1-benzoxepine ring skeleton. We believe
this approach is very efficient for preparation of the
2,3-dihydro-1-benzoxepine ring skeleton and holds
promise for providing future analogues of 1, if desired.

The first step in the synthesis of 1 was the preparation
of 7-bromobenzoxepine-3-one (6) via a tandem SN2/
Witting reaction (Scheme 1). Treatment of 5-bromosali-
cylaldehyde (3) with 1.2 equiv. of sodium ethoxide
generated the corresponding sodium salt of 5-bromosal-
icylaldehyde; its subsequent O-alkylation with �-
chloroketone (4)11 produced 5. Intramolecular ring
formation via Witting olefination between the tethered
triphenylacetophosphorane and the formyl group in 5
gave highly functionalized 6 in 63% overall yield based
on 3.

Next, the vinyl chloride moiety was installed (Scheme
2). Benzoxepin-3-one (6) was treated with
chloromethylphosphonium ylide (generated in situ with
n-BuLi) to give 7, in 78% yield, as an inseparable
mixture of two diastereomers in a ratio of 1:4, E :Z
(calculated from the integrals in the 1H NMR spec-
trum). Treatment of aryl bromides 7 with 10 equiv. of
CuCN in refluxing DMF gave aryl nitrile 8 in 64%
yield.12 At this point, the diastereomeric mixture of aryl

nitrile 8 could be separated by silica column chro-
matography (ethyl acetate:hexanes, 1:35), and the final
assignment of the configuration for purified (E)-8a and
(Z)-8b was determined by NOE and 2D-heteronuclear
correlation experiments.

The final transformation to complete the synthesis is
outlined in the latter half of Scheme 2. Treatment of
aryl nitrile (E)-8a with methyl lithium in THF at −30°C
produced pterulone (1) in 78% yield. Reduction of aryl
nitrile (Z)-8b with DIBAL-H gave aryl aldehyde 9 in
81% yield, and further reduction of 9 with NaBH4 in
MeOH produced 2 in 88% yield. The spectral and
physical characteristics (IR, 1H, 13C NMR, and melting
points) of synthetic 1 and 2 were identical to the
published data.8,9

The synthesis reported herein provided pterulone (1) in
four steps and in 5% overall yield from 3, and provided
analog 2 in five steps and in 19% overall yield from 3.
The stereoselectivity on chloromethylenation of 6 via
Witting olefination is not satisfactory, which diminishes
the overall yield, especially in the case of E-olefin 1; this
outcome was anticipated since the Witting olefination
produces Z-configuration olefin preferentially.13 Since
both E- and Z-isomers of 2 exit in the nature, a
stereoselective preparation of both isomers are develop-
ing under way. The advantage of tandem reactions
sequences is an efficient strategy for construction of
structurally and stereochemically complex structures
from relative simple starting materials. The one-pot,
tandem SN2/Witting reaction sequences of salicylalde-
hyde (3) and �-chloroketone phosphorane (4) produc-
ing highly functionalized benzoxepine-3-one (6) is
unprecedented, and it is an efficient strategy to con-
struct 1-benzoxepine ring skeleton. This concise syn-
thetic strategy may be exploited for the preparation of
analogues of both natural products.

Scheme 2. (a) n-BuLi, ClCH2PPh3Cl, THF, rt (78%); (b) 10 equiv. CuCN, DMF, reflux (64%); (c) MeLi, THF, −30°C (78%); (d)
DIBAL-H, THF, rt (81%); (e) NaBH4, MeOH (88%).
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